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Broadcast

How many radios?

Positioning Mobile

Embedded

IoTRadar
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Integration

1950 2020
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1992

© Raimond Spekking / CC BY-SA 4.0 (via Wikimedia 
Commons) (https://commons.wikimedia.org/wiki/File:Fisher-
Price_Car_2825_-_electronics_only-92706.jpg), 
https://creativecommons.org/licenses/by-sa/4.0/legalcode 



Integration (Chip)
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A mixed-signal SoC

Discrete -> Integrated

Digital + Analog/RF
nRF51822 - Bluetooth LE SoC : weekend die-shot" - CC-BY–
Modified with annotations. Original by zeptobars
https://zeptobars.com/en/read/nRF51822-Bluetooth-LE-SoC-
Cortex-M0



Integration (Platform)
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A complex platform 
(an old one, easy to open …)

CPU, GPU, 
GSM, …

eMCP
(eMMC + LPDDR)

GSM + GPRS

Much more (GPS, 
FM, WiFi, …)
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Challenge 1:

Integration issues
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EM(RF) Interference between electronic components
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Noise coupling path

Emitter “Aggressor”

Receptor “Victim”

S. Bronckers et al., “Substrate Noise Coupling in Analog/RF Circuits” (Norwood, MA, USA: ARTECH HOUSE, 2009).

K. Slattery and H. Skinner, “Platform Interference in Wireless Systems: Models, Measurement, and Mitigation” (Newnes, 2011).



Complex modeling/design, expensive simulation/test
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Modeling of cross-talk 
(personal notes)

Ansys HFSS virtual 
compliance simulation

src: https://youtu.be/Qn9p7grrQfU

C. R. Paul “Introduction to Electromagnetic Compatibility” 2nd Edition (Wiley, 2006)



Additional problem: coexistence of different types
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Digital circuits
Noise source
Extrinsic deterministic noise
Distinctive noise properties

Analog/RF circuits
Sensitive to noise
Intrinsic random noise
Thermal noise, flicker noise, …

Coupling
Path for the noise
Overlap in frequency

A. Afzali-Kusha et al., “Substrate Noise Coupling in SoC Design: Modeling, Avoidance, and Validation,” Proceedings of the IEEE (December 2006).

K. Slattery and H. Skinner, “Platform Interference in Wireless Systems: Models, Measurement, and Mitigation” (Newnes, 2011).



Challenge 2:

Securing the wireless medium

15



Security challenge

16

Shared medium
Many attack possibilities

Crypto

Easy access
Harder in the past
Easier now (e.g., SDRs)

Example: S. Kamkar, “Drive It like You Hacked It: New Attacks and Tools to Wirelessly Steal Cars,” DEFCON 23 (2015).
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Example: S. Kamkar, “Drive It like You Hacked It: New Attacks and Tools to Wirelessly Steal Cars,” DEFCON 23 (2015).



Security challenge
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Shared medium
Many attack possibilities

Crypto and Protocols
Integrity, Confidentiality, Etc.

Injecting, 
Spoofing, 
Replay, Relay, 
…

Crypto

Easy access
Harder in the past
Easier now (e.g., SDRs)

Example: S. Kamkar, “Drive It like You Hacked It: New Attacks and Tools to Wirelessly Steal Cars,” DEFCON 23 (2015).



Challenge 3:

Unintended emanations
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Emission security “EmSec”
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R. J. Anderson, “Security Engineering - a Guide to Building Dependable Distributed Systems” (2. Ed.) (Wiley, 2008).
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R. J. Anderson, “Security Engineering - a Guide to Building Dependable Distributed Systems” (2. Ed.) (Wiley, 2008).



Emission security “EmSec”
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} Compromising emanations 
related to digital activity

R. J. Anderson, “Security Engineering - a Guide to Building Dependable Distributed Systems” (2. Ed.) (Wiley, 2008).
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TEMPEST
(tens of meters)

P

P

“TEMPEST: A Signal Problem” (NSA, 1972).
W. van Eck, “Electromagnetic Radiation from Video Display Units: An Eavesdropping Risk?,” Comput. Secur. 4, no. 4 (1985).
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K

(Soft)Tempest
SW
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M. G. Kuhn and R. J. Anderson, “Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations,” in Information Hiding (1998).
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TEMPEST
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P

P

K

Side Channel Attacks
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(Soft)
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Tempest
SW
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TEMPEST
(tens of meters)

P

P

K

Side Channel Attacks
(mm to 1m)

(Soft)

L(p,k)

Tempest
SW

Active stimulation
(ambient/intentional)
(mm to meters)

NONSTOP, 
Retroflector, …

(Active)

“TEMPEST: A Signal Problem” (NSA, 1972).
W. van Eck, “Electromagnetic Radiation from Video Display Units: An Eavesdropping Risk?,” Comput. Secur. 4, no. 4 (1985).

M. G. Kuhn and R. J. Anderson, “Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations,” in Information Hiding (1998).

D. Agrawal et al., “The EM Side-Channel(s),” in CHES 2002.

C. Ramsay and J. Lohuis, TEMPEST Attacks against AES, 2017.

A. T. Markettos, “Active Electromagnetic Attacks on Secure Hardware” (PhD Thesis, University of Cambridge, UK, 2011).
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Side channels against communication devices
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Conventional
Side channels

Crypto

A. Biryukov, D. Dinu, and Y. Le Corre, “Side-Channel Attacks Meet Secure Network Protocols,” in ACNS 2017.

C. O’Flynn and Z. Chen, “Power Analysis Attacks Against IEEE 802.15.4 Nodes,” in COSADE 2016.



Side channels against communication devices

20

Conventional
Side channels

Crypto

Physical access
Often outside threat model

A. Biryukov, D. Dinu, and Y. Le Corre, “Side-Channel Attacks Meet Secure Network Protocols,” in ACNS 2017.

C. O’Flynn and Z. Chen, “Power Analysis Attacks Against IEEE 802.15.4 Nodes,” in COSADE 2016.

AES Implementation Resistant to Side-Channel Analysis Attacks? - Discussion Forum - Mbed TLS (Previously PolarSSL)



Putting all together:

Security threats emerging from the 

interaction between digital activity and 

radio transceivers
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Problem statement

22

Digital 
(SW+HW)

TX

RX

Digital 
(HW+SW)

RX

TX

Security research question
Does logic activity produce physical leakages

that flow from digital components to radio blocks
breaking the security of the wireless links?

Victim A B

RX

Attacker

E.g., confidentiality, authenticity

(EmSec)

(EMI/RFI)

(WiSec)



Some related work in this direction
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Parasitic backscattering in RFID
(Load modulation in NFC)

T. Plos, “Susceptibility of UHF RFID Tags to Electromagnetic Analysis,” in RSA Conference 2008.

Power modulates impedance seen by reader

Side-channels up to 1m
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Card state (on/off) changes impedance
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Some related work in this direction

23

Parasitic backscattering in RFID
(Load modulation in NFC)

T. Plos, “Susceptibility of UHF RFID Tags to Electromagnetic Analysis,” in RSA Conference 2008.

Z. Yang, Q. Huang, and Q. Zhang, “NICScatter: Backscatter as a Covert Channel in Mobile Devices,” in MobiCom 2017.

E. Cottais, J. Lopes Esteves, and C. Kasmi, “Second Order Soft-TEMPEST in RF Front-Ends: Design and Detection of 
Polyglot Modulations,” EMC EUROPE 2018.

Backscattering in WiFi cards

Second-Order Soft-TEMPEST

Power modulates impedance seen by reader

Side-channels up to 1m

Card state (on/off) changes impedance

Covert channels

Soft-TEMPEST + cascaded effects

Polyglot covert channel on WiFi



Contributions: two novel security problems
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Screaming Channels (Digital to TX)
Passive side channel leakage from 

digital activity to the radio transmitter 
and the radio channel

Side channels
Screaming 
Channels



Contributions: two novel security problems
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Screaming Channels (Digital to TX)
Passive side channel leakage from 

digital activity to the radio transmitter 
and the radio channel

Noise-SDR (Digital to RX)
Active arbitrary modulation of digital 

noise to generate valid signals to 
inject in other receivers

Soft-TEMPEST

Spoofing/Injection

Noise
SDR

Side channels
Screaming 
Channels



Publications
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Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers
Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, Aurélien Francillon
Proceedings of the 25th ACM conference on Computer and communications security (CCS) , Toronto, 
Canada (acceptance rate: 16.6%)
Third place at the CSAW Europe applied research competition 2018

Understanding Screaming Channels: From a Detailed Analysis to Improved Attacks
Giovanni Camurati, Aurélien Francillon, François-Xavier Standaert
IACR Transactions on Cryptographic Hardware and Embedded Systems (CHES 2020)
Google Bughunter Hall of Fame Honorable Mention

Noise-SDR: Shaping Arbitrary Radio Signals Out of Noise on Modern Smartphones
Giovanni Camurati, Aurélien Francillon
Under submission (major revision)

Inception: System-wide Security Testing of Real-World Embedded Systems Software
Nassim Corteggiani, Giovanni Camurati, Aurélien Francillon
27th USENIX Security Symposium (USENIX Security 18) , Baltimore, MD (acceptance rate: 19.1%)

SoC Security Evaluation: Reflections on Methodology and Tooling
Nassim Corteggiani, Giovanni Camurati, Marius Muench, Sebastian Poeplau, Aurélien Francillon
Accepted for publication in IEEE Design and Test, Special Issue on Hack@DAC

Screaming 
Channels

Noise-SDR

Other
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Studying a novel side channel

Intuition Discovery

Analysis

Attacks

Defenses Lessons
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Screaming Channels
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Conventional
Side channels

Screaming
Channels

Crypto

Physical access
Often outside threat model

Digital activity visible at 
large distance



Studying a novel side channel

Intuition Discovery

Analysis

Attacks

Defenses Lessons
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Identifying a possible target

Computation
Arm Cortex-M4 @64MHz

Sensing & Actuation

Wireless communication
BLE @2.4GHz

Crypto
(SW/HW)

All in one chip
“Mixed-signal”
Low cost, low power
Easy to integrate

30



Observing the signal

Mixed-signal chip
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noise 

source
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transmitter

Easy propagation
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Identifying an attack model: app layer software AES

Cortex-M4 
+ BLE TX

Antenna + SDR RX

𝟐𝒎

Radio Off Radio TX AES On

Noise

AES Starts Time domain

Packet

62



Studying a novel side channel

Intuition Discovery

Analysis

Attacks

Defenses Lessons
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Studying the root cause

Substrate

AnalogDigital

Many Possible coupling paths

34

Examples: A. Behzad, “Wireless LAN Radios: System Definition to Transistor Design” (IEEE Press Series on 
Microelectronic Systems) (Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008).
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cos(ω𝑡)

sin(ω𝑡)

𝐺

𝑉𝑠𝑢𝑝𝑝𝑙𝑦

I = 𝐴𝑘cos(𝝋𝒌)

Q = 𝐴𝑘sin(𝝋𝒌)
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Studying the root cause

Practical 
case we 
observed
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Detailed experimental study of a novel channel
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Target

Conventional
Screaming

Near Field
@64MHz

CPU -> Radio

Data + Leakage
@2.4GHz

Amplification
Distortion

Quadratic loss
Environment noise
Coexistence with data

Profiled 
correlation 
attacks*

Normalization
Good setup

Specific demodulation 
and extraction

*F. Durvaux and F.-X. Standaert, “From Improved Leakage Detection to the Detection of Points of 
Interests in Leakage Traces,” in EUROCRYPT 2016.



Example: data-leakage coexistence
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Example: distorted leakage model

38

TXCPU

x u zv

Coupling on chip Radio channel
GConventional

leakage
Screaming

leakage

**F.-X. Standaert et al., “An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays,” Proceedings of the IEEE 94, no. 2 (2006).

*F. Durvaux and F.-X. Standaert, “From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces,” in EUROCRYPT 2016.

***W. Schindler, K. Lemke, and C. Paar, “A Stochastic Model for Differential Side Channel Cryptanalysis,” in CHES 2005.
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Example: distorted leakage model

38

TXCPU

x u zv

Coupling on chip Radio channel
GConventional

leakage
Screaming

leakage

HW good HW bad
LR*** bad
Full profile* good

Comparison**:
No extra profile 
distortion after 
normalization

Distortion cause

Nonlinear leakage model

Future work:
Why distorsion?
y = f(v)? Trace vs. signal?
Channel state? Memory effect?

**F.-X. Standaert et al., “An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays,” Proceedings of the IEEE 94, no. 2 (2006).

*F. Durvaux and F.-X. Standaert, “From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces,” in EUROCRYPT 2016.

***W. Schindler, K. Lemke, and C. Paar, “A Stochastic Model for Differential Side Channel Cryptanalysis,” in CHES 2005.



Example: profile comparison with distance

High correlation 
at each distance

High correlation 
between profiles

What really matters are setup quality and environment noise
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Example: Profile reuse

40

Target

Challenging distance
No control

Another similar device

Profile in  favorable 
controlled conditions

The profile can be reused here

Profiling is hard

𝑦 𝑡 = 𝐺𝑥(𝑡)

y’  = 
𝑦−𝑎𝑣𝑔(𝑦)

𝑠𝑡𝑑(𝑦)
=

𝐺𝑥−𝐺𝑎𝑣𝑔(𝑥)

𝐺𝑠𝑡𝑑(𝑥)
= 𝑥′

Per-trace z-score normalization 
as channel estimation

N. Hanley et al., “Empirical Evaluation of Multi-Device Profiling Side-Channel Attacks,” in IEEE SIPS 2014.

O. Choudary and M. G. Kuhn, “Template Attacks on Different Devices,”in COSADE 2014.

D. P. Montminy et al., “Improving Cross-Device Attacks Using Zero-Mean Unit-Variance Normalization,” J. Cryptographic Engineering 3, no. 2 (2013).

M. Abdelaziz Elaabid and S. Guilley, “Portability of Templates,” J. Cryptographic Engineering 2, no. 1 (2012).



Studying a novel side channel

Intuition Discovery
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Attacks

Defenses Lessons
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Attacks at large distance in realistic environments

CCS 2018

Anechoic 
chamber 

42*D. G. Brennan, “Linear Diversity Combining Techniques,” Proceedings of the IRE 47, no. 6 (1959).
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Attacks at large distance in realistic environments

CCS 2018
TCHES 2020

Home with obstacles 
and spatial diversity*

Anechoic 
chamber 

OfficeT-test
Traces

Setup 
becomes 

critical

Reuse profile built in 
convenient conditions 

on a different device

42*D. G. Brennan, “Linear Diversity Combining Techniques,” Proceedings of the IRE 47, no. 6 (1959).



Office

43

Simple Profiling
Connection via cable
(10k x 500 traces)

Complex Attack
Different instance and time
15m (5k x 1000 traces, 2^23, hard)



Attacking Google Eddystone Beacons authentication

Legitimate user Legitimate owner

Broadcast Configuration

URL, ID, Telemetry

Ephemeral, Encrypted

Authentication
(GATT layer, pre-shared AES key)

Security & privacy in mind during design

44
Google/Eddystone, C (2015; repr., Google, 2020), https://github.com/google/eddystone.
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Legitimate user Legitimate owner

Attacker

Broadcast Configuration

URL, ID, Telemetry

Ephemeral, Encrypted

Authentication
(GATT layer, pre-shared AES key)

Security & privacy in mind during design

44

4. Key recovery!

Google/Eddystone, C (2015; repr., Google, 2020), https://github.com/google/eddystone.
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2.4GHz to 2.482GHz

Pseudo-random, large band, fast hops
Not easy to follow37 Data Channels

3 Advertising Channels
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Minimizing the problem of frequency hopping

2.4GHz to 2.482GHz

Pseudo-random, large band, fast hops
Not easy to follow37 Data Channels

3 Advertising Channels

45

time

Channel

time2.4GHz to 2.482GHz

2 Data Channels
3 Advertising Channels

Channel

Two channels only (specify channel map*)
Easy to follow

*Bluetooth SIG, Bluetooth 5.0 Core Specification, 2016.



Triggering AES encryptions with known plaintext

Beacon
Owner/
Attacker

Read Unlock 
Characteristic

P = Random()

P

CB = AES128(P,K) CO = AES128(P,K)

Write Unlock 
Characteristic

Unlocked = (CB == CO)

Pre-shared key K

46



Proof-of-concept attack

Realistic Demo
Unmodified Nordic SDK demo*

• Optimized code (O3)
• Hopping Enabled (reduced with channel map)
• TinyAES software (hardware in later versions)

Proof-of-Concept Attack (connection via cable on PCA10040)
70k x 1 profiling traces, 33k x 1 attack traces, rank 2^30

Google Bughunter Program 
Honorable Mention

47

*https://developer.nordicsemi.com/nRF5_SDK/nRF5_SDK_v14.x.x/nRF5_SDK_14.2.0_17b948a.zip
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Countermeasures

Resource constraint devices:
Cost, power, time to market, etc.
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Countermeasures

Resource constraint devices:
Cost, power, time to market, etc.

Classic HW/SW:
Masking, noise, key refresh, limit attempts, ...

Specific (SW):
Radio off during sensitive computations
Force use of HW encryption (for now)

Specific (HW):
Consider impact of coupling on
security during design and test

49



Studying a novel side channel

Intuition Discovery

Analysis

Attacks

Defenses Lessons
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Lessons learned

General Problem: Radios and Side Channels
New threat point: Digital activity visible from a large distance
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Lessons learned

General Problem: Radios and Side Channels
New threat point: Digital activity visible from a large distance

Distinctive: Not a conventional side channel vector
Easier: Amplified leak, large distance, simple and cheap setup
Harder: Distortion, channel noise, data/leak coexistence

Threat: More and more realistic attacks
Potential threat: More devices or new devices are vulnerable
Countermeasures: Clever, specific countermeasures

WiFi? Preliminary results
Hardware AES? Preliminary results

51



Side note: modulation of an intended signal

Propagation of leaks:
1. Radiation
2. Conduction
3. Modulation of an 

intended signal 
(redacted)

4. Acoustic

52

NSA, “NACSIM 5000, Tempest Fundamentals,” 1982.
Declassified in 2000



Context

53

Challenges & Contributions

Conclusion

Screaming Channels

Noise-SDR

Future Work



Achieving arbitrary noise modulation

Background and 
related work Intuition

Implementation

Evaluation/Attacks

Defenses Lessons
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Background and related work

55

The idea
1998, Kuhn et. al
Soft-TEMPEST

P

Tempest
SW

Intentional leakage modulation

Vast literature on air-gap exfiltration
Many physical methods
Generally simple modulation
Generally for air-gap exfiltration

+

M. G. Kuhn and R. J. Anderson, “Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations,” in Information Hiding (1998).

B. Carrara and C. Adams, “Out-of-Band Covert Channels—A Survey,” ACM Comput. Surv. 49, no. 2 (2016).
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E.g., with memory accesses*
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The primitive (generalized, simplified)

56

start = now()
while( now() – start < T/2 )

doSomething()
while( now() – start < T )

doNothing()

Trigger leakage @Fleakage from SW
E.g., with memory accesses*

*M. Guri et al., “GSMem: Data Exfiltration from Air-Gapped Computers over GSM Frequencies,” in USENIX Security 2015.

*Z. Zhan, Z. Zhang, and X. Koutsoukos, “BitJabber: The World’s Fastest Electromagnetic Covert Channel,” in IEEE ITC 2010

“Square wave”@f=1/T
E.g., sys-bus-radio**

**W. Entriken, System Bus Radio, 2013, https://github.com/fulldecent/system-bus-radio.
**C. Shen et al., “When LoRa Meets EMR: Electromagnetic Covert Channels Can Be Super Resilient”, IEEE S&P 2021



In general, simple custom modulation and protocol

57

2-FSK (or M-FSK)

Time

Frequency

1

0

1 1

0

OOK

Time

Frequency

1 0 1 1 0
1/T1

1/T2

1/T0Fleakage +Fleakage +

Fleakage +



Related work (EM)

58

Name Leakage Type Modulation Type Publication Venue

Soft-TEMPEST Electromagnetic AM, FSK Information Hiding 1998

AirHopper Elecromagnetic FSK MALWARE 2014

USBee Elecromagnetic FSK PST 2016

GSMem Elecromagnetic OOK USENIX Security 2015

BitJabber Elecromagnetic OOK, FSK IEEE ITC 2020

MAGNETO Magnetic OOK, FSK ArXiv 2018

ODINI Magnetic OOK-(many cores), FSK IEEE Trans. Inf. Forensics 
Secur. 2020

Matyunin et. al Magnetic OOK, FSK ASP-DAC 2016

Simple custom modulation/protocol



Background: 1-bit coding (e.g., PWM) 
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P. AJ Nuyts, P. Reynaert, and W. Dehaene, “Continuous-Time Digital Front-Ends for 
Multistandard Wireless Transmission” (Springer, 2014).

Fundamental frequency 𝑓0

Generic pulse width and phase



Background: 1-bit coding (e.g., PWM) 

59

𝑠𝑞𝑢𝑎𝑟𝑒𝑤𝑎𝑣𝑒 𝑡 =

δ 𝑡 = 
𝑇high

𝑇0

2

π
sin πδ 𝑡 cos(2π𝑓0𝑡 + 𝜃(𝑡))

෍

𝑘=1

𝑘=+∞
2

𝑘π
sin 𝑘πδ 𝑡 cos(2𝑘π𝑓0𝑡 + 𝑘𝜃(𝑡))

f

P. AJ Nuyts, P. Reynaert, and W. Dehaene, “Continuous-Time Digital Front-Ends for 
Multistandard Wireless Transmission” (Springer, 2014).

Fundamental frequency 𝑓0

Generic pulse width and phase



Background: 1-bit coding (e.g., PWM) 

59

𝑠𝑞𝑢𝑎𝑟𝑒𝑤𝑎𝑣𝑒 𝑡 =

δ 𝑡 = 
𝑇high

𝑇0

2

π
sin πδ 𝑡 cos(2π𝑓0𝑡 + 𝜃(𝑡))

෍

𝑘=1

𝑘=+∞
2

𝑘π
sin 𝑘πδ 𝑡 cos(2𝑘π𝑓0𝑡 + 𝑘𝜃(𝑡))

f

Baseband 
PWM

P. AJ Nuyts, P. Reynaert, and W. Dehaene, “Continuous-Time Digital Front-Ends for 
Multistandard Wireless Transmission” (Springer, 2014).

Fundamental frequency 𝑓0

Generic pulse width and phase



Background: 1-bit coding (e.g., PWM) 

60

𝑠𝑞𝑢𝑎𝑟𝑒𝑤𝑎𝑣𝑒 𝑡 =

δ 𝑡 = 
𝑇high

𝑇0

2

π
sin πδ 𝑡 cos(2π𝑓0𝑡 + 𝜃(𝑡))

෍

𝑘=1

𝑘=+∞
2

𝑘π
sin 𝑘πδ 𝑡 cos(2𝑘π𝑓0𝑡 + 𝑘𝜃(𝑡))

f

Passband 
PWM

P. AJ Nuyts, P. Reynaert, and W. Dehaene, “Continuous-Time Digital Front-Ends for 
Multistandard Wireless Transmission” (Springer, 2014).

Fundamental frequency 𝑓0

Generic pulse width and phase



Background: 1-bit coding (e.g., PWM) 

60

𝑠𝑞𝑢𝑎𝑟𝑒𝑤𝑎𝑣𝑒 𝑡 =

δ 𝑡 = 
𝑇high

𝑇0

2

π
sin πδ 𝑡 cos(2π𝑓0𝑡 + 𝜃(𝑡))

෍

𝑘=1

𝑘=+∞
2

𝑘π
sin 𝑘πδ 𝑡 cos(2𝑘π𝑓0𝑡 + 𝑘𝜃(𝑡))

f

Passband 
PWM

P. AJ Nuyts, P. Reynaert, and W. Dehaene, “Continuous-Time Digital Front-Ends for 
Multistandard Wireless Transmission” (Springer, 2014).

Fundamental frequency 𝑓0

Generic pulse width and phase



Achieving arbitrary noise modulation

Background and 
related work Intuition

Implementation

Evaluation/Attacks

Defenses Lessons

61



The goal: injecting arbitrary packets

62

Noise source Radio receiver
(Possibly on the same platform)

𝒂(𝒕)𝐜𝐨𝐬(𝟐𝝅𝒇𝐜𝒕 + θ(𝒕))

Generic radio signal

A

t

Protocol 
(Higher layers to PHY)



The problem: dream vs. reality
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What we want
Generic SDR

I

Q

n-bit

n-bit

fc

𝒂(𝒕)𝐜𝐨𝐬(𝟐𝝅𝒇𝐜𝒕 + θ(𝒕))

What we have
OOK @Fleakage

Fleakage

1-bit

on/off

Simple OOK 
modulator
(e.g. DRAM 
accesses)

A

t

A

t
low

high

Tsymbol
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Example of implementation
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Offline 
discrete-time 
RF-PWM

Several leakage types of 
Arm smartphones

Generated 
with SDR tools
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Implementation: discrete-time RF-PWM

67

𝒏/FS

A

FS, 𝒂 𝒏/FS , θ 𝒏/FS , FIFInput:

𝐜𝐨𝐬 𝟐𝝅FIFn/FS + θ n/FS

Output:

Ti

T1,   T2,   T3,   …

Thigh,i = asin 𝒂 𝒏/FS / 𝝅

Thigh,1 Thigh,2 Thigh,3 

Simplified explanation



Implementation: software control

68

start = now()
while( now() – start < Thigh,i )

leakyOperation()
while( now() – start < Ti )

doNothing()

*-***: Time accuracy is fundamental!
(Bandwidth, am/fm/pm quantization)

***Z. Zhang et al., “Triggering Rowhammer Hardware Faults on ARM: A Revisit,” ASHES@CCS 2018.

**Z. Zhang et al., “Leveraging EM Side-Channel Information to Detect Rowhammer Attacks,” in IEEE S&P 2020

*M. Schwarz et al., “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript,” in FC 2017.



Implementation: software control

68

start = now()
while( now() – start < Thigh,i )

leakyOperation()
while( now() – start < Ti )

doNothing()

Leaky**, fast***

Accurate*, stable

*-***: Time accuracy is fundamental!
(Bandwidth, am/fm/pm quantization)

***Z. Zhang et al., “Triggering Rowhammer Hardware Faults on ARM: A Revisit,” ASHES@CCS 2018.

**Z. Zhang et al., “Leveraging EM Side-Channel Information to Detect Rowhammer Attacks,” in IEEE S&P 2020

*M. Schwarz et al., “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript,” in FC 2017.
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Implementation: software control

68

start = now()
while( now() – start < Thigh,i )

leakyOperation()
while( now() – start < Ti )

doNothing()

Leaky**, fast***

Accurate*, stable

E.g., on Arm-v8 (re)use DRAMMER 

clock_gettime()

*-***: Time accuracy is fundamental!
(Bandwidth, am/fm/pm quantization)

Many in the paper and in general

(or µ-arch attacks literature)

***Z. Zhang et al., “Triggering Rowhammer Hardware Faults on ARM: A Revisit,” ASHES@CCS 2018.
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Evaluation: Protocols
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Variety
Voice AM, NBFM, PSK31, 2x 2PSK, RTTY45.45, MFSK128, Olivia 
64/2000, SSTV, HamDRM, FT4, LoRa, GLONASS C/A Code

Modulation
Analog and digital
AM, FM, OOK, FSK, M-FSK, GFSK, PSK, OFDM, CSS, DSSS

Bandwidth
31 Hz (PSK31) to 0.511MHz (GLONASS)

Extra
Forward Error Correction, addressing, upper layers in general

Tradeoffs
Speed (2x 2PSK at 1000bps), SNR (FT4 at SNR < -10dB), etc.
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Variety
19 Arm-based phones
Major vendors

Limitations on leakage
9 phones have a leakage visible outside
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But still overlap with other radios + FIF offers some freedom

Limitations on bandwidth and stability
Tens of kHz on ArmV7-A, few MHz on ArmV8-A
But still enough for many useful protocols
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Evaluation: Arm-based smartphones

71

Variety
19 Arm-based phones
Major vendors

Limitations on leakage
9 phones have a leakage visible outside
Not always strong

Limitations on leakage frequency
DRAM (e.g., 400MHz, 800MHz, 1600MHz, 1794MHz) and harmonics (up to GHz)
But still overlap with other radios + FIF offers some freedom

Limitations on bandwidth and stability
Tens of kHz on ArmV7-A, few MHz on ArmV8-A
But still enough for many useful protocols

This is just one possible implementation
Might be better/worse on other platforms

Time resolution and 
stability is critical for the 
Noise-SDR idea



Applications: tracking, detection, injection, tx, ...

72

Tracking using FT4 beacons, up to 5m on Galaxy S5 Mini
Using existing reception tools

J. Taylor, FT4, https://physics.princeton.edu/pulsar/k1jt/FT4_Protocol.pdf.
J. Taylor, WSJT, https://physics.princeton.edu/pulsar/K1JT/.
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FM injection
NFC modulation
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Applications: tracking, detection, injection, tx, …

Noise injection
FM injection
NFC modulation
GPS jamming
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Future work
DRAM @1.6GHz
GLONASS @1.6GHz
Can we spoof the position?

Example

FM

NFC

RAM

GNSS
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Defenses

Soft-TEMPEST-specific (HW)
Reduce leakages and coupling
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Defenses

Soft-TEMPEST-specific (HW)
Reduce leakages and coupling

Soft-TEMPEST-specific (SW)
Reduce timing resolution and software control on hardware

Applications specific (SW/HW):
Shield smartphone, spoofing detection, …
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Lessons learned

The idea
Arbitrary modulation of noise
Leveraging fully-digital radios ideas
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Lessons learned

The idea
Arbitrary modulation of noise
Leveraging fully-digital radios ideas

A vision for applications and attacks
Signal injection (preliminary results)
Signal transmission with all advantages of SDRs

Implementation
If there is a good leakage, then it works well
Time resolution is probably the biggest challenge

77
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Challenges & Contributions

Conclusion

Screaming Channels

Noise-SDR

Future Work



Future work (Screaming Channels)
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Reception: radio techniques (e.g., CSI, errors)
Techniques

Attack: low-freq/multivariate, deep learning3, more applications

3R. Wang, H. Wang, and E. Dubrova, “Far Field EM Side-Channel Attack on AES Using Deep Learning,” ACM ASHES 2020.

Preliminary results

2J. Choi, H.-Y. Yang, and D.-H. Cho, “TEMPEST Comeback: A Realistic Audio Eavesdropping Threat on Mixed-Signal SoCs,” ACM CCS 2020.

1D. R. E. Gnad, J. Krautter, and M. Baradaran Tahoori, “Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices,” IACR TCHES 2019.
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3R. Wang, H. Wang, and E. Dubrova, “Far Field EM Side-Channel Attack on AES Using Deep Learning,” ACM ASHES 2020.

Distortion: can it be modeled without knowing the design?
Coupling: analysis with access to the design

Types

Modulation: other blocks, FM/PM, LO reradiation, WiFi and others

Targets and threat model: link-layer, PKC, hardware block, peripherals, … 

Preliminary results

Beyond mixed-signal: smartphone NFC, platforms, planes, …

Defenses
Countermeasures: specific, lightweight, cheap

Simulation/Testing: automated analysis, functional+EM simulation

2J. Choi, H.-Y. Yang, and D.-H. Cho, “TEMPEST Comeback: A Realistic Audio Eavesdropping Threat on Mixed-Signal SoCs,” ACM CCS 2020.

1D. R. E. Gnad, J. Krautter, and M. Baradaran Tahoori, “Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices,” IACR TCHES 2019.

Beyond radios: CPU->ADC side channel1, Audio IN -> SWREG noise TEMPEST2
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Future work (Noise-SDR)

80
*C. Shen et al., “When LoRa Meets EMR: Electromagnetic Covert Channels Can Be Super Resilient”, IEEE S&P 2021.

Preliminary results

Time resolution: better timing sources, calibration, compensation, …
Techniques

1-bit coding: passband sigma-delta, mathematical modeling

Implementation

Leakage sources: screen, camera, GPU, …

Software control: JavaScript, WebAssembly, …

Platform: x86, laptops, smartwatches, IoT, …

SSC: dealing* with spread spectrum clocking

Applications

GNSS spoofing: GLONASS, …

Beyond radios: injecting signals in sensors

Soft-RFI: finding software-controlled RFI effects



Future work (Other dangerous interactions)
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“NONSTOP”: unintentional backscattering of ambient signals

Other interactions 
with radios

Analog/RF to Digital: are there problems in the other direction? 

Analog/RF to Analog/RF: from radio to radio

…



Context
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Challenges & Contributions

Conclusion

Screaming Channels

Noise-SDR

Future Work



Answer to the question
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Digital 
(SW+HW)

TX

RX

Digital 
(HW+SW)

RX

TX

Security research question
Does logic activity produce physical leakages

that flow from digital components to radio blocks
breaking the security of the wireless links?

Victim A B

Digital activity is broadcast
Screaming Channels

Yes!

Noise-SDR
Arbitrary modulation 

of digital noise

E.g., side channel

E.g., injection



Conclusion

84

CONTEXT: Modern connected systems (computation close to communication)

PROBLEM: Do unexpected interactions between high-speed digital logic and radio

FINDINGS: Digital activity leaks over the radio channel (e.g., side channels over the air)
Digital noise shaped into arbitrary RF signals (e.g., injection)

transceivers threat the security of the data processed and communicated
by these devices? 

CONCLUSION: Wireless security should consider the threats brought by EMI/RFI

DISCUSSION: Many open research directions for consolidation or related effects

during design, simulation, test, and security analysis



Open Source!
https://eurecom-s3.github.io/screaming_channels/

Code + Data + Instructions

Already replicated by many in industry and academia

85

https://eurecom-s3.github.io/screaming_channels/


Thank You! 

@GioCamurati

https://giocamurati.github.io

camurati@eurecom.fr
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https://giocamurati.github.io/
mailto:camurati@eurecom.fr


Backup Slides
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“Hubris”
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AIR FORCE SYSTEMS SECURITY MEMORANDUM 7011
https://cryptome.org/afssm-7011.htm
1 MAY 1998 

"IMG_7006A Martin Ryckaert. 1587-1633. Anvers. Paysage
avec la chute d'Icare. Landscape with the Fall of Icarus. Vers
1625. Cologne Wallraf Richartz Museum" by jean louis 
mazieres is licensed with CC BY-NC-SA 2.0. 

"Nature does not support straight lines […]

8.2.3.3. However, humans, in their infinite 
wisdom, attempt to defy nature and make 
computers that use square waves […]

That extra energy […] has to go 
somewhere.”

https://cryptome.org/afssm-7011.htm


Some informal terminology

89

Signal: useful intended signal carrying some information
Noise: other spurious signals (in EMSec they are useful signals, with other noise, e.g., thermal, on top)

Compromising emanation: noise signal unexpectedly carrying information

Application: TEMPEST (recover P), Soft-TEMPEST/covert ch. (send data), side channel (recover k)

Trace: Portion of a compromising emanation corresponding to a sensitive operation (e.g., AES encryption)
Signal-to-Noise Ratio: don’t confuse SNR of a trace with the SNR of the data dependency with p or k

Leakage variable y: intermediate value processed in the algorithm, e.g., y = Sbox(p xor k)

Leakage l(y): the actual leakage that we measure
Leakage model m(y): a model of the leakage, e.g., HW[y], or estimated with profiling set

Order: m can be linear or nonlinear, the relation between m and l can be first order, second order, …



Backup (Screaming Channels)
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Screaming Channels, a general problem?

91

Our targets
Nordic Semiconductor nRF52832 (BLE Nano v2, PCA10040, Rigado BDM301)
Nordic Semiconductor nRF52840 (PCA10056)
Qualcom Atheros AR9271 (PENGUIN WiFi adapter, Alfa Network WiFi adapter)
ExpressIF ESP32 WiFi/BLE
Nokia 3.1 NFC modulation

Used in many real-world products (e.g., Eddystone)

Leakages in test mode + LO modulation
Leakages in test mode (regulator to radio)

Disclosure
General problem acknowledged by the manufacturer(s)

Future work
Automating analysis to reach larger scale, with/without access to the physical 
design and test mode firmware

General challenges
We presented general challenges (e.g., orthogonality, many other GFSK protocols)

Platform level coupling, active modulation



Screaming Channels and WiFi (1/3)
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Challenges
Non-orthogonal modulation (we must demodulate and compute packet errors)
Higher signal/hardware quality (e.g., PA linearity*)
ADC resolution when extracting the error from packets

Preliminary results
Leakages detected in test mode on some cards (AR9271, ESP32)
(Programming + having test mode is not always straightforward)

Ideas
Low-frequency non-uniform sampling of many packet errors and 
parameters

*A. Behzad, “Wireless LAN Radios: System Definition to Transistor Design” (IEEE Press Series on 
Microelectronic Systems) (Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008).



Screaming Channels and WiFi (2/3)

93

𝟔𝟒 𝑴𝑯𝒛 𝟐. 𝟒 𝑮𝑯𝒛 𝟏𝟏𝟕 𝑴𝑯𝒛 𝟐. 𝟒 𝑮𝑯𝒛 𝟏𝟏𝟕 𝑴𝑯𝒛 𝟒𝒇𝒓𝒙/𝟑

CW or BLE CW LO

nRF52832 AR9271 AR9271



Screaming Channels and WiFi (3/3)
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Security of the hardware AES block

Simple Setup
10cm in office
USRP N210
350k x 100 traces

Leaks from Memory Transfers
Firmware memcpy of p,c,k
Hardware DMA of p,c,k
No leak detected inside the AES

Attacks
Only SPA attack are possible
As of now we have not 
succeeded

95



Obstacles and spatial diversity

TX

RX

RX

Spatial Diversity
Different paths
Uncorrelated noise
Combine with Maximal Ratio

Attack
55cm in home environment
37k x 500 profiling traces
1990 x 500 attack traces
Rank 2^26

96

D. G. Brennan, “Linear Diversity Combining Techniques,” Proceedings of the IRE 
47, no. 6 (1959): 1075–1102, https://doi.org/10.1109/JRPROC.1959.287136.



Separated by n*fclk
Outside the ISM band
Assume fixed channel
More on hopping later

Trace Extraction: Quadrature Amplitude Demodulation

𝐺𝐴𝑘

2
𝐴ES(t)cos((𝜔+𝜔𝑐𝑙𝑘)t+𝜑𝑘)𝐺𝐴𝑘cos(ω𝑡 + 𝝋𝒌) + + ...

Main Data Leak + Data

Orthogonal 
Modulation

𝐼𝑅𝑋
2 + 𝑄𝑅𝑋

2
cos((𝜔+𝜔𝑐𝑙𝑘)𝑡)

−sin((𝜔+𝜔𝑐𝑙𝑘)𝑡)

𝐺𝐴𝑘

4
𝐴𝐸𝑆 𝑡
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𝒇
𝒓

𝒆
𝒒

(𝒕
)

𝒕

𝒏
𝒐

𝒓
𝒎

𝒂
𝒍𝒊

𝒛
𝒆

𝒅
𝒂

𝒎
𝒑

𝒍𝒊
𝒕𝒖

𝒅
𝒆

(𝒕
)

𝒕

Extract
(trigger)

𝒇𝒕𝒓𝒊𝒈

𝒕

Align N
(cross-corr.)

Extraction

𝐺𝐴𝑘

4
𝐴𝐸𝑆 𝑡

Average N
𝒕
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Normalization + Channel Estimation

1. Z-score normalization inspired by previous work
2. Per-trace normalization removes the effect of the channel!

𝑦 𝑡 = 𝐺𝑥(𝑡)

y’  = 
𝑦−𝑎𝑣𝑔(𝑦)

𝑠𝑡𝑑(𝑦)
=

𝐺𝑥−𝐺𝑎𝑣𝑔(𝑥)

𝐺𝑠𝑡𝑑(𝑥)
= 𝑥′

99

N. Hanley et al., “Empirical Evaluation of Multi-Device Profiling Side-Channel Attacks,” in IEEE SIPS 2014.

O. Choudary and M. G. Kuhn, “Template Attacks on Different Devices,”in COSADE 2014.

D. P. Montminy et al., “Improving Cross-Device Attacks Using Zero-Mean Unit-Variance Normalization,” J. Cryptographic Engineering 3, no. 2 (2013).

M. Abdelaziz Elaabid and S. Guilley, “Portability of Templates,” J. Cryptographic Engineering 2, no. 1 (2012).



Understanding the Leakage

Leakage variable y

Leakage model m(y)

Leakage l(y)

= SBox(p xor k)

= HW[y] model(y) Estimate (nonlinear) leakage model 
for each y, using the profiling set

Estimate the linear correlation 
between m(y) and l(y) on test set

This is the r-test*

100

*F. Durvaux and F.-X. Standaert, “From Improved Leakage Detection to the Detection of Points of 
Interests in Leakage Traces,” in EUROCRYPT 2016.



Understanding the Leakage

Leakage variable y

Leakage model m(y)

Leakage l(y)

= SBox(p xor k)

= HW[y] model(y) Estimate (nonlinear) leakage model 
for each y, using the profiling set

Estimate the linear correlation 
between m(y) and l(y) on test set

This is the r-test [7]

Results for Screaming vs. Conventional
• Less POIs
• Slightly lower but still high correlation
• HW is not a good model

SNR is comparable
But the leakage is distorted
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Understanding the Leakage

Leakage variable y

Leakage model m(y)

Leakage l(y)

= SBox(p xor k)

= HW[y] Linear combination of the bits of y 

Estimate a linear model of the bits 
of y using linear regression*

102

*W. Schindler, K. Lemke, and C. Paar, “A Stochastic Model for Differential Side Channel 
Cryptanalysis,” in CHES 2005.



Understanding the Leakage

Leakage variable y

Leakage model m(y)

Leakage l(y)

= SBox(p xor k)

= HW[y] Linear combination of the bits of y 

Estimate a linear model of the bits 
of y using linear regression [7]

Results for Screaming vs. Conventional
• Confirm leakage from Sbox output
• Linear model is good for conventional traces
• Bad for screaming traces The leakage model is nonlinear 
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Understanding the Leakage

Leakage variable y

Leakage model m(y)

Leakage l(y)

Templates* can capture a second order 
relation between m(y) and l(y)

Results for Screaming vs. Conventional
• Templates attacks are not considerably 

better than profiled correlation attacks

First-order leakage (for our sample size) 

104*S. Chari, J. R. Rao, and P. Rohatgi, “Template Attacks,” in CHES 2002.



Conclusion

1. Comparable SNR, distorted leakage model
2. Nonlinear leakage model
3. First order leakage

Profiled Correlation Attacks
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How To Compare Profiles

Distance & Device

P1, A1 P2, A2

#Traces for key recovery given profile P and attack traces A*

Reuse P1

𝐍𝟏𝟏 ∝ 𝒓−𝟐 𝑷𝟏, 𝑨𝟏 𝐍𝟐𝟐 ∝ 𝒓−𝟐 𝑷𝟐, 𝑨𝟐

𝐍𝟏𝟐 ∝ 𝒓−𝟐 𝑷𝟏, 𝑨𝟐

𝒓 𝑷𝟏, 𝑨𝟐 = 𝒓 𝑷𝟐, 𝑨𝟐 𝒓 𝑷𝟏, 𝑷𝟐

The higher the better

106
*F.-X. Standaert et al., “An Overview of Power Analysis Attacks Against Field 
Programmable Gate Arrays,” Proceedings of the IEEE 94, no. 2 (2006).



Distance, Setup, Channel Frequency, Instance, Time

Distance
• Quadratic power loss, but we can amplify
• Normalization cancels the multiplicative channel gain
• No extra distortion (different from conventional*)

Environment (noise) and setup
• Bigger role than distance, but we can improve the setup
• Some connections are better

Device instance 
• No significant impact, per-trace normalization helps

Big Advantage
• Profile in good conditions, attack another instance 

in harsh conditions

107*O. Meynard et al., “Far Correlation-Based EMA with a Precharacterized Leakage Model,” in DATE 2010.



Understanding the SC distorted leakage model

108

TXCPU

x u zv

Coupling on chip Radio channel
GConventional

leakage
Screaming

leakage

Trace vs side channel signal
Do not confuse them
In general, there is not relation between their SNRs, what about distortion?

Conventional vs. screaming
Can we express a relation between a screaming trace and a conventional trace?
Can we express a relation between the two leakage models?
Can we use a fixed portion of a trace to relate the two?

Potential useful application
Conventional profile, screaming attack?

Simple channel estimation 
between u and v does not 
seem to work



Backup (Noise-SDR)
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Intuition: the full chain
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Example: HamDRM RF-PWM
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Implementation: discrete-time RF-PWM

112

Future Work
Model the spectrum in detail
Effect of the edges
Effect of interpolation
Effect of jitter
Etc.

Discrete-time RF-PWM



Implementation: mathematical modeling

113

Very large design space
Many variations of RF-PWM with impact on the spectrum properties*

We have chosen those most adapted to our very constrained scenario
E.g., no interpolation of the baseband signal, natural sampling of the IF carrier, …

*P. AJ Nuyts, P. Reynaert, and W. Dehaene, “Continuous-Time Digital Front-Ends for 
Multistandard Wireless Transmission” (Springer, 2014).

Some specific properties of noise modulation and injection
Inaccurate time source, with jitter
Properties (e.g., frequency and phase) of the underlying leakage
To which point we can approximate and simplify the desired signal?

Future work
Model the additional features of RF-PWM applied to noise modulation
Improve signal quality by optimizing some design choices



Injection
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GPS jamming
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Evaluation: Ham to GLONASS, choose best tradeoff! 

Name Modulation Bandwidth

Voice AM AM 10 kHz

Voice FM NBFM 12.5 kHz

PSK31 2-PSK, USB 31 Hz

2xPSK500 2 2-PSK subcarriers, USB 1.2 kHz

RTTY45.45 2-FSK, USB 170 Hz

MFSK128 M-FSK, USB 1.928 kHz

Olivia 64/2000 M-FSK USB 2 kHz

SSTV FM, USB 2.5 kHz

HamDRM QAM, OFDM, USB 2.4 kHz

FT4 4-GFSK, USB 90 Hz

LoRa CSS 8 kHz (customizable)

GLONASS C/A DSSS 0.511 MHz



Evaluation: Arm-based smartphones
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Concurrent work: LoRa-like Chirp Spread Spectrum
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CCS (Simplified)
Time

Frequency

0

1/T1

1/Tn

1

C, Shen et al., “When LoRa Meets EMR: Electromagnetic Covert Channels Can Be Super Resilient”, IEEE S&P 2021
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