GRADUATE SCHOOL AND RESEARCH CENTER AT THE HEART OF THE DIGITAL SOCIETY

Security threats emerging from the interaction between digital activity and radio transceivers

Menaces de sécurité à la frontière entre le bruit électromagnétique et les émetteurs-récepteurs radio

Giovanni Camurati

December 8th, 2020, Sophia-Antipolis, France

Members of the Jury

Supervisor Prof. Dr. Aurélien Francillon, EURECOM

Co-supervisor Prof. Dr. Ludovic Apvrille, Télécom Paris Reviewers Prof. Dr. Srđan Čapkun, ETH Zurich

Dr. Markus Kuhn, University of Cambridge

Dr. Rabéa Ameur-Boulifa, Télécom Paris José Lopes Esteves, Agence nationale de la Sécurité des Systèmes d'Information Prof. Dr. Raymond Knopp, EURECOM Prof. Dr. Wenyuan Xu (Guest), Zhejiang University

Thank you for being "here" today!

Something about me

Giovanni Camurati

@GioCamurati https://giocamurati.github.io

PhD Student EURECOM Sophia-Antipolis, France

Security Hardware + Software + Radio

GNSS (km)

GNSS (km) Cellular (km)

GNSS (km) Cellular (km) FM (km)

GNSS (km) Cellular (km) FM (km) WiFi (m)

GNSS (km) Cellular (km) FM (km) WiFi (m) BT/BLE (m)

GNSS (km) Cellular (km) FM (km) WiFi (m) BT/BLE (m) NFC (mm)

GNSS (km) Cellular (km) FM (km) WiFi (m) BT/BLE (m) NFC (mm) UWB, ANT, ...

Integration

1950

© Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons) (https://commons.wikimedia.org/wiki/File:Fisher-Price_Car_2825_-_electronics_only-92706.jpg), https://creativecommons.org/licenses/by-sa/4.0/legalcode

1992

2020

Integration (Chip)

nRF51822 - Bluetooth LE SoC : weekend die-shot" - CC-BY– Modified with annotations. Original by zeptobars https://zeptobars.com/en/read/nRF51822-Bluetooth-LE-SoC-Cortex-M0

Integration (Platform)

A complex platform (an old one, easy to open ...)

Challenge 1: Integration issues

EM(RF) Interference between electronic components

K. Slattery and H. Skinner, "Platform Interference in Wireless Systems: Models, Measurement, and Mitigation" (Newnes, 2011).

S. Bronckers et al., "Substrate Noise Coupling in Analog/RF Circuits" (Norwood, MA, USA: ARTECH HOUSE, 2009).

Complex modeling/design, expensive simulation/test

Modeling of cross-talk (personal notes)

Ansys HFSS virtual compliance simulation

Additional problem: coexistence of different types

Digital circuits

Noise source Extrinsic deterministic noise Distinctive noise properties

Analog/RF circuits

Sensitive to noise Intrinsic random noise Thermal noise, flicker noise, ...

K. Slattery and H. Skinner, "Platform Interference in Wireless Systems: Models, Measurement, and Mitigation" (Newnes, 2011). A. Afzali-Kusha et al., "Substrate Noise Coupling in SoC Design: Modeling, Avoidance, and Validation," Proceedings of the IEEE (December 2006).

Challenge 2: Securing the wireless medium

Security challenge

Shared medium Many attack possibilities

Easy access Harder in the past Easier now (e.g., SDRs)

Security challenge

Shared medium Many attack possibilities

Easy access Harder in the past Easier now (e.g., SDRs)

Example: S. Kamkar, "Drive It like You Hacked It: New Attacks and Tools to Wirelessly Steal Cars," DEFCON 23 (2015).

Security challenge

Shared medium Many attack possibilities

Easy access Harder in the past Easier now (e.g., SDRs)

Crypto and Protocols Integrity, Confidentiality, Etc.

Example: S. Kamkar, "Drive It like You Hacked It: New Attacks and Tools to Wirelessly Steal Cars," DEFCON 23 (2015).

Challenge 3: Unintended emanations

Emission security "EmSec"

R. J. Anderson, "Security Engineering - a Guide to Building Dependable Distributed Systems" (2. Ed.) (Wiley, 2008).

Emission security "EmSec"

R. J. Anderson, "Security Engineering - a Guide to Building Dependable Distributed Systems" (2. Ed.) (Wiley, 2008).

Emission security "EmSec"

R. J. Anderson, "Security Engineering - a Guide to Building Dependable Distributed Systems" (2. Ed.) (Wiley, 2008).

"TEMPEST: A Signal Problem" (NSA, 1972).

W. van Eck, "Electromagnetic Radiation from Video Display Units: An Eavesdropping Risk?," Comput. Secur. 4, no. 4 (1985).

"TEMPEST: A Signal Problem" (NSA, 1972).

W. van Eck, "Electromagnetic Radiation from Video Display Units: An Eavesdropping Risk?," Comput. Secur. 4, no. 4 (1985).

"TEMPEST: A Signal Problem" (NSA, 1972).

W. van Eck, "Electromagnetic Radiation from Video Display Units: An Eavesdropping Risk?," Comput. Secur. 4, no. 4 (1985).

M. G. Kuhn and R. J. Anderson, "Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations," in Information Hiding (1998).

"TEMPEST: A Signal Problem" (NSA, 1972).

W. van Eck, "Electromagnetic Radiation from Video Display Units: An Eavesdropping Risk?," Comput. Secur. 4, no. 4 (1985).

M. G. Kuhn and R. J. Anderson, "Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations," in Information Hiding (1998).

"TEMPEST: A Signal Problem" (NSA, 1972).

W. van Eck, "Electromagnetic Radiation from Video Display Units: An Eavesdropping Risk?," Comput. Secur. 4, no. 4 (1985).

M. G. Kuhn and R. J. Anderson, "Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations," in Information Hiding (1998).

D. Agrawal et al., "The EM Side-Channel(s)," in CHES 2002.

C. Ramsay and J. Lohuis, TEMPEST Attacks against AES, 2017.

Some categories (informal, non exhaustive)

"TEMPEST: A Signal Problem" (NSA, 1972).

W. van Eck, "Electromagnetic Radiation from Video Display Units: An Eavesdropping Risk?," Comput. Secur. 4, no. 4 (1985).

M. G. Kuhn and R. J. Anderson, "Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations," in Information Hiding (1998).

D. Agrawal et al., "The EM Side-Channel(s)," in CHES 2002.

C. Ramsay and J. Lohuis, TEMPEST Attacks against AES, 2017.

Some categories (informal, non exhaustive)

"TEMPEST: A Signal Problem" (NSA, 1972).

W. van Eck, "Electromagnetic Radiation from Video Display Units: An Eavesdropping Risk?," Comput. Secur. 4, no. 4 (1985).

M. G. Kuhn and R. J. Anderson, "Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations," in Information Hiding (1998).

D. Agrawal et al., "The EM Side-Channel(s)," in CHES 2002.

C. Ramsay and J. Lohuis, TEMPEST Attacks against AES, 2017.

A. T. Markettos, "Active Electromagnetic Attacks on Secure Hardware" (PhD Thesis, University of Cambridge, UK, 2011).

Side channels against communication devices

Side channels against communication devices

A. Biryukov, D. Dinu, and Y. Le Corre, "Side-Channel Attacks Meet Secure Network Protocols," in ACNS 2017.C. O'Flynn and Z. Chen, "Power Analysis Attacks Against IEEE 802.15.4 Nodes," in COSADE 2016.

Side channels against communication devices

A. Biryukov, D. Dinu, and Y. Le Corre, "Side-Channel Attacks Meet Secure Network Protocols," in ACNS 2017.

C. O'Flynn and Z. Chen, "Power Analysis Attacks Against IEEE 802.15.4 Nodes," in COSADE 2016.

AES Implementation Resistant to Side-Channel Analysis Attacks? - Discussion Forum - Mbed TLS (Previously PolarSSL)

Putting all together: Security threats emerging from the interaction between digital activity and radio transceivers

Security research question

(EmSec) (EMI/RFI) (WiSec)

Does logic activity produce physical leakages that flow from digital components to radio blocks breaking the security of the wireless links?

E.g., confidentiality, authenticity

Some related work in this direction

Parasitic backscattering in RFID (Load modulation in NFC) Power modulates impedance seen by readerSide-channels up to 1m

T. Plos, "Susceptibility of UHF RFID Tags to Electromagnetic Analysis," in RSA Conference 2008.

Some related work in this direction

Parasitic backscattering in RFID (Load modulation in NFC)

Backscattering in WiFi cards

Power modulates impedance seen by reader
 Side-channels up to 1m
 Card state (on/off) changes impedance
 Covert channels

T. Plos, "Susceptibility of UHF RFID Tags to Electromagnetic Analysis," in RSA Conference 2008.

Z. Yang, Q. Huang, and Q. Zhang, "NICScatter: Backscatter as a Covert Channel in Mobile Devices," in MobiCom 2017.

Some related work in this direction

Parasitic backscattering in RFID (Load modulation in NFC)

Backscattering in WiFi cards

Second-Order Soft-TEMPEST

- Power modulates impedance seen by reader
 Side-channels up to 1m
 Card state (on/off) changes impedance
 Covert channels
 Soft-TEMPEST + cascaded effects
 - Polyglot covert channel on WiFi

T. Plos, "Susceptibility of UHF RFID Tags to Electromagnetic Analysis," in RSA Conference 2008.

Z. Yang, Q. Huang, and Q. Zhang, "NICScatter: Backscatter as a Covert Channel in Mobile Devices," in MobiCom 2017.

E. Cottais, J. Lopes Esteves, and C. Kasmi, "Second Order Soft-TEMPEST in RF Front-Ends: Design and Detection of Polyglot Modulations," EMC EUROPE 2018.

Contributions: two novel security problems

Screaming Channels (Digital to TX)

Passive side channel leakage from digital activity to the radio transmitter and the radio channel

Contributions: two novel security problems

Soft-TEMPEST

Spoofing/Injection

Screaming Channels (Digital to TX)

Passive side channel leakage from digital activity to the radio transmitter and the radio channel Noise-SDR (Digital to RX) Active arbitrary modulation of digital noise to generate valid signals to inject in other receivers

Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers

<u>Giovanni Camurati</u>, Sebastian Poeplau, Marius Muench, Tom Hayes, Aurélien Francillon Proceedings of the 25th ACM conference on Computer and communications security (CCS), Toronto, Canada (acceptance rate: 16.6%)

Third place at the CSAW Europe applied research competition 2018

Understanding Screaming Channels: From a Detailed Analysis to Improved Attacks <u>Giovanni Camurati</u>, Aurélien Francillon, François-Xavier Standaert *IACR Transactions on Cryptographic Hardware and Embedded Systems (CHES 2020)* Google Bughunter Hall of Fame Honorable Mention

Noise-SDR: Shaping Arbitrary Radio Signals Out of Noise on Modern Smartphones Giovanni Camurati, Aurélien Francillon

Under submission (major revision)

SoC Security Evaluation: Reflections on Methodology and Tooling

Nassim Corteggiani, <u>Giovanni Camurati</u>, Marius Muench, Sebastian Poeplau, Aurélien Francillon Accepted for publication in IEEE Design and Test, Special Issue on Hack@DAC

Inception: System-wide Security Testing of Real-World Embedded Systems Software

Nassim Corteggiani, <u>Giovanni Camurati</u>, Aurélien Francillon 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD (acceptance rate: 19.1%) Screaming Channels

Noise-SDR

Other

Studying a novel side channel

Digital activity visible at large distance

Studying a novel side channel

Identifying a possible target

Easy propagation

Identifying an attack model: app layer software AES

Studying a novel side channel

Many Possible coupling paths

Examples: A. Behzad, "Wireless LAN Radios: System Definition to Transistor Design" (IEEE Press Series on Microelectronic Systems) (Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008).

*F. Durvaux and F.-X. Standaert, "From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces," in EUROCRYPT 2016.

*F. Durvaux and F.-X. Standaert, "From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces," in EUROCRYPT 2016.

*F. Durvaux and F.-X. Standaert, "From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces," in EUROCRYPT 2016.

Example: data-leakage coexistence

*F. Durvaux and F.-X. Standaert, "From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces," in EUROCRYPT 2016. **F.-X. Standaert et al., "An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays," Proceedings of the IEEE 94, no. 2 (2006). ***W. Schindler, K. Lemke, and C. Paar, "A Stochastic Model for Differential Side Channel Cryptanalysis," in CHES 2005. 38

*F. Durvaux and F.-X. Standaert, "From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces," in EUROCRYPT 2016. **F.-X. Standaert et al., "An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays," Proceedings of the IEEE 94, no. 2 (2006). ***W. Schindler, K. Lemke, and C. Paar, "A Stochastic Model for Differential Side Channel Cryptanalysis," in CHES 2005.

*F. Durvaux and F.-X. Standaert, "From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces," in EUROCRYPT 2016.

F.-X. Standaert et al., "An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays," Proceedings of the IEEE 94, no. 2 (2006). *W. Schindler, K. Lemke, and C. Paar, "A Stochastic Model for Differential Side Channel Cryptanalysis," in CHES 2005.

*F. Durvaux and F.-X. Standaert, "From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces," in EUROCRYPT 2016. **F.-X. Standaert et al., "An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays," Proceedings of the IEEE 94, no. 2 (2006). ***W. Schindler, K. Lemke, and C. Paar, "A Stochastic Model for Differential Side Channel Cryptanalysis," in CHES 2005.

*F. Durvaux and F.-X. Standaert, "From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces," in EUROCRYPT 2016.

F.-X. Standaert et al., "An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays," Proceedings of the IEEE 94, no. 2 (2006). *W. Schindler, K. Lemke, and C. Paar, "A Stochastic Model for Differential Side Channel Cryptanalysis," in CHES 2005.

*F. Durvaux and F.-X. Standaert, "From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces," in EUROCRYPT 2016.

F.-X. Standaert et al., "An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays," Proceedings of the IEEE 94, no. 2 (2006). *W. Schindler, K. Lemke, and C. Paar, "A Stochastic Model for Differential Side Channel Cryptanalysis," in CHES 2005.

*F. Durvaux and F.-X. Standaert, "From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces," in EUROCRYPT 2016. **F.-X. Standaert et al., "An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays," Proceedings of the IEEE 94, no. 2 (2006). ***W. Schindler, K. Lemke, and C. Paar, "A Stochastic Model for Differential Side Channel Cryptanalysis," in CHES 2005.

Example: profile comparison with distance

	d (m)	environment	antenna	$\hat{r}(P_i,P_2),$ -log10(p)	$max ho, r_{z}$
P_2	0.10	home	standard	$1.00, \inf$	0.79, 75.72
P_3	0.20	home	standard	0.96, 142.77	0.77, 72.30
P_4	1.00	office	directional	0.40, 10.32	0.41, 30.66
P_5	5.00	anechoic	directional	0.96, 139.51	0.85, 89.84
P_6	10.00	anechoic	directional	0.92, 107.80	0.77, 71.71

High correlationHibetween profilesat

High correlation at each distance

What really matters are setup quality and environment noise

Example: Profile reuse

D. P. Montminy et al., "Improving Cross-Device Attacks Using Zero-Mean Unit-Variance Normalization," J. Cryptographic Engineering 3, no. 2 (2013).

N. Hanley et al., "Empirical Evaluation of Multi-Device Profiling Side-Channel Attacks," in IEEE SIPS 2014.

O. Choudary and M. G. Kuhn, "Template Attacks on Different Devices," in COSADE 2014.

D. P. Montminy et al., "Improving Cross-Device Attacks Using Zero-Mean Unit-Variance Normalization," J. Cryptographic Engineering 3, no. 2 (2013).

N. Hanley et al., "Empirical Evaluation of Multi-Device Profiling Side-Channel Attacks," in IEEE SIPS 2014.

O. Choudary and M. G. Kuhn, "Template Attacks on Different Devices," in COSADE 2014.

D. P. Montminy et al., "Improving Cross-Device Attacks Using Zero-Mean Unit-Variance Normalization," J. Cryptographic Engineering 3, no. 2 (2013).

N. Hanley et al., "Empirical Evaluation of Multi-Device Profiling Side-Channel Attacks," in IEEE SIPS 2014.

O. Choudary and M. G. Kuhn, "Template Attacks on Different Devices," in COSADE 2014.

D. P. Montminy et al., "Improving Cross-Device Attacks Using Zero-Mean Unit-Variance Normalization," J. Cryptographic Engineering 3, no. 2 (2013).

N. Hanley et al., "Empirical Evaluation of Multi-Device Profiling Side-Channel Attacks," in IEEE SIPS 2014.

O. Choudary and M. G. Kuhn, "Template Attacks on Different Devices," in COSADE 2014.

Another similar device Example: Profile reuse **Profile in favorable Challenging distance** controlled conditions No control **Profiling is hard** The profile can be reused here **Per-trace z-score normalization** as channel estimation Target

D. P. Montminy et al., "Improving Cross-Device Attacks Using Zero-Mean Unit-Variance Normalization," J. Cryptographic Engineering 3, no. 2 (2013).

N. Hanley et al., "Empirical Evaluation of Multi-Device Profiling Side-Channel Attacks," in IEEE SIPS 2014.

O. Choudary and M. G. Kuhn, "Template Attacks on Different Devices," in COSADE 2014.

Studying a novel side channel

*D. G. Brennan, "Linear Diversity Combining Techniques," Proceedings of the IRE 47, no. 6 (1959).

42

*D. G. Brennan, "Linear Diversity Combining Techniques," Proceedings of the IRE 47, no. 6 (1959).

*D. G. Brennan, "Linear Diversity Combining Techniques," Proceedings of the IRE 47, no. 6 (1959).

42

*D. G. Brennan, "Linear Diversity Combining Techniques," Proceedings of the IRE 47, no. 6 (1959).

42

*D. G. Brennan, "Linear Diversity Combining Techniques," Proceedings of the IRE 47, no. 6 (1959).

Simple Profiling Connection via cable (10k x 500 traces)

Complex Attack

Different instance and time 15m (5k x 1000 traces, 2^23, hard)

Legitimate user

Legitimate owner

Security & privacy in mind during design

Security & privacy in mind during design

Minimizing the problem of frequency hopping

Minimizing the problem of frequency hopping

*Bluetooth SIG, Bluetooth 5.0 Core Specification, 2016.

Triggering AES encryptions with known plaintext

Proof-of-concept attack

Google Bughunter Program Honorable Mention

Realistic Demo

Unmodified Nordic SDK demo^{*}

- Optimized code (O3)
- Hopping Enabled (reduced with channel map)
- TinyAES software (hardware in later versions)

Proof-of-Concept Attack (connection via cable on PCA10040) 70k x 1 profiling traces, 33k x 1 attack traces, rank 2^30

*https://developer.nordicsemi.com/nRF5_SDK/nRF5_SDK_v14.x.x/nRF5_SDK_14.2.0_17b948a.zip

Studying a novel side channel

Resource constraint devices: Cost, power, time to market, etc.

Resource constraint devices: Cost, power, time to market, etc.

Classic HW/SW:

Masking, noise, key refresh, limit attempts, ...

Resource constraint devices: Cost, power, time to market, etc.

Classic HW/SW:

Masking, noise, key refresh, limit attempts, ...

Specific (SW):

Radio off during sensitive computations Force use of HW encryption (for now)

Resource constraint devices: Cost, power, time to market, etc.

Classic HW/SW:

Masking, noise, key refresh, limit attempts, ...

Specific (SW):

Radio off during sensitive computations Force use of HW encryption (for now)

Specific (HW):

Consider impact of coupling on security during design and test

Studying a novel side channel

General Problem: Radios and Side Channels New threat point: Digital activity visible from a large distance

General Problem: Radios and Side Channels **New threat point:** Digital activity visible from a large distance

Distinctive: Not a conventional side channel vector **Easier:** Amplified leak, large distance, simple and cheap setup Harder: Distortion, channel noise, data/leak coexistence

General Problem: Radios and Side Channels **New threat point:** Digital activity visible from a large distance

Distinctive: Not a conventional side channel vector **Easier:** Amplified leak, large distance, simple and cheap setup Harder: Distortion, channel noise, data/leak coexistence

Threat: More and more realistic attacks **Potential threat:** More devices or new devices are vulnerable **Countermeasures:** Clever, specific countermeasures

General Problem: Radios and Side Channels **New threat point:** Digital activity visible from a large distance

Distinctive: Not a conventional side channel vector **Easier:** Amplified leak, large distance, simple and cheap setup **Harder:** Distortion, channel noise, data/leak coexistence

Threat: More and more realistic attacks Potential threat: More devices or new devices are vulnerable Countermeasures: Clever, specific countermeasures

WiFi? Preliminary results Hardware AES? Preliminary results

Side note: modulation of an intended signal

1-5. (G) **Propagation of TEMPEST Signals (U).** - There are four basic means by which compromising emanations may be propagated. They are: electromagnetic radiation; conduction; modulation of an intended signal; and acoustics. A brief explanation of each follows.

a. (C) Electromagnetic Radiation (U). - Whenever a RED signal is generated or processed in an equipment, an electric, magnetic or electromagnetic field is generated. If this electromagnetic field is permitted to exist outside of an equipment, a twofold problem is created; first the electromagnetic field may be detected outside the Controlled Space (CS); second the electromagnetic field may couple onto BLACK lines connected to or located near the equipments, which exit the CS of the installation.

b. (C) Line Conduction. - Line Conduction is defined as the emanations produced on any external or interface line of an equipment, which, in any way, alters the signal on the external or interface lines. The external lines include signal lines, control and indicator lines, and a.c. and d.c. powerlines.

c. (C) Fortuitous Conduction. - Emanations in the form of signals propagated along any unintended conductor such as pipes, beams, wires, cables, conduits, ducts, etc.

d. (C) [Six lines redacted.]

Figure 1-5. - Amplitude-Modulated Carrier (U) (U)

e. $(\bigcirc$ Acoustics (U) - Characteristically plaintext processing systems are primarily electrical in function. However, other sources of CE exist where mechanical operations occur and sound is produced. Keyboards, printers, relays -- these produce sound. and consequently can be sources of compromise.

NSA, "NACSIM 5000, Tempest Fundamentals," 1982. Declassified in 2000

Propagation of leaks:

- 1. Radiation
- 2. Conduction
- 3. Modulation of an intended signal (redacted)
- 4. Acoustic

Achieving arbitrary noise modulation

Background and related work

Vast literature on air-gap exfiltration Many physical methods Generally simple modulation Generally for air-gap exfiltration

M. G. Kuhn and R. J. Anderson, "Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations," in Information Hiding (1998). B. Carrara and C. Adams, "Out-of-Band Covert Channels—A Survey," ACM Comput. Surv. 49, no. 2 (2016).

The primitive (generalized, simplified)

The primitive (generalized, simplified)

*M. Guri et al., "GSMem: Data Exfiltration from Air-Gapped Computers over GSM Frequencies," in USENIX Security 2015. *Z. Zhan, Z. Zhang, and X. Koutsoukos, "BitJabber: The World's Fastest Electromagnetic Covert Channel," in IEEE ITC 2010

The primitive (generalized, simplified)

*M. Guri et al., "GSMem: Data Exfiltration from Air-Gapped Computers over GSM Frequencies," in USENIX Security 2015. *Z. Zhan, Z. Zhang, and X. Koutsoukos, "BitJabber: The World's Fastest Electromagnetic Covert Channel," in IEEE ITC 2010

**C. Shen et al., "When LoRa Meets EMR: Electromagnetic Covert Channels Can Be Super Resilient", IEEE S&P 2021 **W. Entriken, System Bus Radio, 2013, https://github.com/fulldecent/system-bus-radio.

In general, simple custom modulation and protocol

Related work (EM)

Simple custom modulation/protocol

Name	Leakage Type	Modulation Type	Publication Venue
Soft-TEMPEST	Electromagnetic	AM, FSK	Information Hiding 1998
AirHopper	Elecromagnetic	FSK	MALWARE 2014
USBee	Elecromagnetic	FSK	PST 2016
GSMem	Elecromagnetic	ООК	USENIX Security 2015
BitJabber	Elecromagnetic	OOK, FSK	IEEE ITC 2020
MAGNETO	Magnetic	OOK, FSK	ArXiv 2018
ODINI	Magnetic	OOK-(many cores), FSK	IEEE Trans. Inf. Forensics Secur. 2020
Matyunin et. al	Magnetic	OOK, FSK	ASP-DAC 2016

Fundamental frequency f_0 Generic pulse width and phase

```
squarewave(t) =
```


P. AJ Nuyts, P. Reynaert, and W. Dehaene, "Continuous-Time Digital Front-Ends for Multistandard Wireless Transmission" (Springer, 2014).

59

Fundamental frequency
$$f_0$$

Generic pulse width and phase
 $squarewave(t) = -\begin{cases} \delta(t) = \frac{T_{\text{high}}}{T_0} \\ \frac{2}{\pi} \sin(\pi\delta(t))\cos(2\pi f_0 t + \theta(t)) \\ k = +\infty \\ \sum_{k=1}^{k=+\infty} \frac{2}{k\pi} \sin(k\pi\delta(t))\cos(2k\pi f_0 t + k\theta(t)) \end{cases}$

Achieving arbitrary noise modulation

The goal: injecting arbitrary packets

The problem: dream vs. reality

The problem: dream vs. reality

The solution: fully digital radio with 1-bit coding

Achieving arbitrary noise modulation

Several leakage types of Arm smartphones

Input: F_s , $a(n/F_s)$, $\theta(n/F_s)$, F_{IF}

Simplified explanation

Input: F_s , $a(n/F_s)$, $\theta(n/F_s)$, F_{IF}

Simplified explanation

Output:

Input: F_s , $a(n/F_s)$, $\theta(n/F_s)$, F_{IF}

Simplified explanation

Input: F_s , $a(n/F_s)$, $\theta(n/F_s)$, F_{IF}

Simplified explanation

*-***: Time accuracy is fundamental! (Bandwidth, am/fm/pm quantization)


```
*-***: Time accuracy is fundamental!
   start = now()
                                                   (Bandwidth, am/fm/pm quantization)
   while( now() - start < T<sub>high.i</sub> )
                                                  Leaky<sup>**</sup>, fast<sup>***</sup>
            leakyOperation()
   while(now() – start < T_i)
            doNothing()
Accurate<sup>*</sup>, stable
clock_gettime()
(or μ-arch attacks literature)
```



```
start = now()
while( now() - start < T<sub>high,i</sub> )
leakyOperation()
while( now() - start < T<sub>i</sub> )
doNothing()
Accurate*, stable
clock_gettime()
(or μ-arch attacks literature)
```

*-***: Time accuracy is fundamental! (Bandwidth, am/fm/pm quantization)

Leaky^{**}, fast^{***}

Many in the paper and in general


```
start = now()
while( now() - start < T<sub>high,i</sub> )
leakyOperation()
while( now() - start < T<sub>i</sub> )
doNothing()
Accurate*, stable
clock_gettime()
(or μ-arch attacks literature)
```

*-***: Time accuracy is fundamental! (Bandwidth, am/fm/pm quantization)

Leaky^{**}, fast^{***}

Many in the paper and in general E.g., on Arm-v8 (re)use DRAMMER

*M. Schwarz et al., "Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript," in FC 2017.

**Z. Zhang et al., "Leveraging EM Side-Channel Information to Detect Rowhammer Attacks," in IEEE S&P 2020

***Z. Zhang et al., "Triggering Rowhammer Hardware Faults on ARM: A Revisit," ASHES@CCS 2018.

Achieving arbitrary noise modulation

Evaluation: Protocols

Variety

Voice AM, NBFM, PSK31, 2x 2PSK, RTTY45.45, MFSK128, Olivia 64/2000, SSTV, HamDRM, FT4, LoRa, GLONASS C/A Code

Modulation

Analog and digital

AM, FM, OOK, FSK, M-FSK, GFSK, PSK, OFDM, CSS, DSSS

Bandwidth

31 Hz (PSK31) to 0.511MHz (GLONASS)

Extra

Forward Error Correction, addressing, upper layers in general

Tradeoffs

Speed (2x 2PSK at 1000bps), SNR (FT4 at SNR < -10dB), etc.

Evaluation: Arm-based smartphones

Variety

19 Arm-based phones Major vendors

Limitations on leakage

9 phones have a leakage visible outside Not always strong

Limitations on bandwidth and stability Tens of kHz on ArmV7-A, few MHz on ArmV8-A But still enough for many useful protocols

Limitations on leakage frequency

DRAM (e.g., 400MHz, 800MHz, 1600MHz, 1794MHz) and harmonics (up to GHz) But still overlap with other radios + F_{IF} offers some freedom

Evaluation: Arm-based smartphones

Variety

19 Arm-based phones Major vendors

Limitations on leakage

9 phones have a leakage visible outside Not always strong

Limitations on bandwidth and stability Tens of kHz on ArmV7-A, few MHz on ArmV8-A But still enough for many useful protocols

Limitations on leakage frequency

DRAM (e.g., 400MHz, 800MHz, 1600MHz, 1794MHz) and harmonics (up to GHz) But still overlap with other radios + F_{IF} offers some freedom

This is just one possible implementation Might be better/worse on other platforms

Evaluation: Arm-based smartphones

Variety

19 Arm-based phones Major vendors

Limitations on leakage

9 phones have a leakage visible outside Not always strong

Limitations on bandwidth and stability Tens of kHz on ArmV7-A, few MHz on ArmV8-A But still enough for many useful protocols

Limitations on leakage frequency

DRAM (e.g., 400MHz, 800MHz, 1600MHz, 1794MHz) and harmonics (up to GHz) But still overlap with other radios + F_{IF} offers some freedom

This is just one possible implementation Might be better/worse on other platforms

> Time resolution and stability is critical for the Noise-SDR idea

Applications: tracking, detection, injection, tx, ...

Tracking using FT4 beacons, up to 5m on Galaxy S5 Mini Using existing reception tools

J. Taylor, FT4, https://physics.princeton.edu/pulsar/k1jt/FT4_Protocol.pdf.

J. Taylor, WSJT, https://physics.princeton.edu/pulsar/K1JT/.

Applications: tracking, detection, injection, tx, ...

Noise injection

FM injection NFC modulation GPS jamming

Example

Applications: tracking, detection, injection, tx, ...

Noise injection

FM injection NFC modulation GPS jamming

Future work DRAM @1.6GHz GLONASS @1.6GHz Can we spoof the position?

Example

Achieving arbitrary noise modulation

Soft-TEMPEST-specific (HW)

Reduce leakages and coupling

Soft-TEMPEST-specific (HW)

Reduce leakages and coupling

Soft-TEMPEST-specific (SW)

Reduce timing resolution and software control on hardware

Defenses

Soft-TEMPEST-specific (HW) Reduce leakages and coupling

Soft-TEMPEST-specific (SW)

Reduce timing resolution and software control on hardware

Applications specific (SW/HW):

Shield smartphone, spoofing detection, ...

Achieving arbitrary noise modulation

Lessons learned

-'Q́-

The idea Arbitrary modulation of noise

Leveraging fully-digital radios ideas

Lessons learned

The idea

Arbitrary modulation of noise Leveraging fully-digital radios ideas

A vision for applications and attacks

Signal injection (preliminary results)

Signal transmission with all advantages of SDRs

Lessons learned

The idea

Arbitrary modulation of noise Leveraging fully-digital radios ideas

- A vision for applications and attacks
- Signal injection (preliminary results) Signal transmission with all advantages of SDRs

Implementation

If there is a good leakage, then it works well Time resolution is probably the biggest challenge

Preliminary results

Techniques Attack: low-freq/multivariate, deep learning³, more applications

¹D. R. E. Gnad, J. Krautter, and M. Baradaran Tahoori, "Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices," IACR TCHES 2019. ²J. Choi, H.-Y. Yang, and D.-H. Cho, "TEMPEST Comeback: A Realistic Audio Eavesdropping Threat on Mixed-Signal SoCs," ACM CCS 2020. 79 ³R. Wang, H. Wang, and E. Dubrova, "Far Field EM Side-Channel Attack on AES Using Deep Learning," ACM ASHES 2020.

Preliminary results

Techniques Attack: low-freq/multivariate, deep learning³, more applications

Analysis Coupling: analysis with access to the design

¹D. R. E. Gnad, J. Krautter, and M. Baradaran Tahoori, "Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices," IACR TCHES 2019.
 ²J. Choi, H.-Y. Yang, and D.-H. Cho, "TEMPEST Comeback: A Realistic Audio Eavesdropping Threat on Mixed-Signal SoCs," ACM CCS 2020.
 ³R. Wang, H. Wang, and E. Dubrova, "Far Field EM Side-Channel Attack on AES Using Deep Learning," ACM ASHES 2020.

Preliminary results

Techniques Attack: low-freq/multivariate, deep learning³, more applications Analysis Coupling: analysis with access to the design Modulation: other blocks, FM/PM, LO reradiation, WiFi and others TypesTargets and threat model: link-layer, PKC, hardware block, peripherals, ...Beyond mixed-signal: smartphone NFC, platforms, planes, ...Beyond radios: CPU->ADC side channel¹, Audio IN -> SWREG noise TEMPEST²

¹D. R. E. Gnad, J. Krautter, and M. Baradaran Tahoori, "Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices," IACR TCHES 2019.

²J. Choi, H.-Y. Yang, and D.-H. Cho, "TEMPEST Comeback: A Realistic Audio Eavesdropping Threat on Mixed-Signal SoCs," ACM CCS 2020.

³R. Wang, H. Wang, and E. Dubrova, "Far Field EM Side-Channel Attack on AES Using Deep Learning," ACM ASHES 2020.

79

Preliminary results

Techniques Attack: low-freq/multivariate, deep learning³, more applications Analysis Coupling: analysis with access to the design Modulation: other blocks, FM/PM, LO reradiation, WiFi and others TypesTargets and threat model: link-layer, PKC, hardware block, peripherals, ...Beyond mixed-signal: smartphone NFC, platforms, planes, ...Beyond radios: CPU->ADC side channel¹, Audio IN -> SWREG noise TEMPEST² Defenses - Countermeasures: specific, lightweight, cheap Simulation/Testing: automated analysis, functional+EM simulation

¹D. R. E. Gnad, J. Krautter, and M. Baradaran Tahoori, "Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices," IACR TCHES 2019.

²J. Choi, H.-Y. Yang, and D.-H. Cho, "TEMPEST Comeback: A Realistic Audio Eavesdropping Threat on Mixed-Signal SoCs," ACM CCS 2020.

³R. Wang, H. Wang, and E. Dubrova, "Far Field EM Side-Channel Attack on AES Using Deep Learning," ACM ASHES 2020.

Future work (Noise-SDR)

Preliminary results

TechniquesTime resolution: better timing sources, calibration, compensation, ...1-bit coding: passband sigma-delta, mathematical modeling

Future work (Noise-SDR)

Preliminary results

Techniques	Time resolution: better timing sources, calibration, compensation,
	1-bit coding: passband sigma-delta, mathematical modeling
	Leakage sources: screen, camera, GPU,
	Software control: JavaScript, WebAssembly,
	Platform: x86, laptops, smartwatches, IoT,
	SSC: dealing* with spread spectrum clocking

Future work (Noise-SDR)

Preliminary results

Techniques {	Time resolution: better timing sources, calibration, compensation,
	1-bit coding: passband sigma-delta, mathematical modeling
Implementation -	Leakage sources: screen, camera, GPU,
	Software control: JavaScript, WebAssembly,
	Platform: x86, laptops, smartwatches, IoT,
	SSC: dealing* with spread spectrum clocking
Applications	GNSS spoofing: GLONASS,
	Beyond radios: injecting signals in sensors
	Soft-RFI: finding software-controlled RFI effects

Future work (Other dangerous interactions)

Other interactions with radios

...

"NONSTOP": unintentional backscattering of ambient signals Analog/RF to Digital: are there problems in the other direction? Analog/RF to Analog/RF: from radio to radio

CONTEXT: Modern connected systems (computation close to communication)

PROBLEM: Do unexpected interactions between high-speed digital logic and radio transceivers threat the security of the data processed and communicated by these devices?

FINDINGS: Digital activity leaks over the radio channel (e.g., side channels over the air) Digital noise shaped into arbitrary RF signals (e.g., injection)

DISCUSSION: Many open research directions for consolidation or related effects

CONCLUSION: Wireless security should consider the threats brought by EMI/RFI during design, simulation, test, and security analysis

Open Source! https://eurecom-s3.github.io/screaming_channels/ Code + Data + Instructions

Already replicated by many in industry and academia

Thank You!

@GioCamurati https://giocamurati.github.io camurati@eurecom.fr **Backup Slides**

"Nature does not support straight lines [...]

8.2.3.3. However, humans, in their infinite wisdom, attempt to defy nature and make computers that use square waves [...]

That extra energy [...] has to go somewhere."

AIR FORCE SYSTEMS SECURITY MEMORANDUM 7011 https://cryptome.org/afssm-7011.htm 1 MAY 1998

"IMG_7006A Martin Ryckaert. 1587-1633. Anvers. Paysage avec la chute d'Icare. Landscape with the Fall of Icarus. Vers 1625. Cologne Wallraf Richartz Museum" by jean louis mazieres is licensed with CC BY-NC-SA 2.0.

Some informal terminology

Signal: useful intended signal carrying some information

Noise: other spurious signals (in EMSec they are useful signals, with other noise, e.g., thermal, on top)

Compromising emanation: noise signal unexpectedly carrying information **Application:** TEMPEST (recover P), Soft-TEMPEST/covert ch. (send data), side channel (recover k)

Trace: Portion of a compromising emanation corresponding to a sensitive operation (e.g., AES encryption) Signal-to-Noise Ratio: don't confuse SNR of a trace with the SNR of the data dependency with p or k

Leakage variable y: intermediate value processed in the algorithm, e.g., y = Sbox(p xor k) Leakage I(y): the actual leakage that we measure Leakage model m(y): a model of the leakage, e.g., HW[y], or estimated with profiling set

Order: m can be linear or nonlinear, the relation between m and I can be first order, second order, ...

Backup (Screaming Channels)

Screaming Channels, a general problem?

⁷ Used in many real-world products (e.g., Eddystone) **Our targets** Nordic Semiconductor nRF52832 (BLE Nano v2, PCA10040, Rigado BDM301) Nordic Semiconductor nRF52840 (PCA10056) Qualcom Atheros AR9271 (PENGUIN WiFi adapter, Alfa Network WiFi adapter) ExpressIF ESP32 WiFi/BLE Leakages in test mode + LO modulation Nokia 3.1 NFC modulation Leakages in test mode (regulator to radio) Platform level coupling, active modulation Disclosure

General problem acknowledged by the manufacturer(s)

General challenges

We presented general challenges (e.g., orthogonality, many other GFSK protocols)

Future work

Automating analysis to reach larger scale, with/without access to the physical design and test mode firmware 91

Screaming Channels and WiFi (1/3)

Challenges

Non-orthogonal modulation (we must demodulate and compute packet errors) Higher signal/hardware quality (e.g., PA linearity^{*}) ADC resolution when extracting the error from packets

Preliminary results

Leakages detected in test mode on some cards (AR9271, ESP32) (Programming + having test mode is not always straightforward)

Ideas

Low-frequency non-uniform sampling of many packet errors and parameters

*A. Behzad, "Wireless LAN Radios: System Definition to Transistor Design" (IEEE Press Series on Microelectronic Systems) (Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008).

Screaming Channels and WiFi (2/3)

Screaming Channels and WiFi (3/3)

(a) Alfa Network Long-Range USB Adapter AWUS036NHA

(b) Penguin Wireless N USB Adapter (TPE-N150USB)

Security of the hardware AES block

Simple Setup

Leaks from Memory Transfers

10cm in office USRP N210 350k x 100 traces

Firmware *memcpy* of p,c,k Hardware DMA of p,c,k No leak detected inside the AES

Attacks

Only SPA attack are possible As of now we have not succeeded

Obstacles and spatial diversity

Spatial Diversity Different paths Uncorrelated noise Combine with Maximal Ratio

Attack

55cm in home environment 37k x 500 profiling traces 1990 x 500 attack traces Rank 2^26

Trace Extraction: Quadrature Amplitude Demodulation

 $\frac{GA_k}{A}AES(t)$

Extraction

Normalization + Channel Estimation

- 1. Z-score normalization inspired by previous work
- 2. Per-trace normalization removes the effect of the channel!

$$y(t) = Gx(t)$$
$$y' = \frac{y - avg(y)}{std(y)} = \frac{Gx - Gavg(x)}{Gstd(x)} = x'$$

D. P. Montminy et al., "Improving Cross-Device Attacks Using Zero-Mean Unit-Variance Normalization," J. Cryptographic Engineering 3, no. 2 (2013). N. Hanley et al., "Empirical Evaluation of Multi-Device Profiling Side-Channel Attacks," in IEEE SIPS 2014.

O Chaudem and M. C. Kuba. (Translate Attacks on Different Device Vin COCADE 2014

O. Choudary and M. G. Kuhn, "Template Attacks on Different Devices," in COSADE 2014.

M. Abdelaziz Elaabid and S. Guilley, "Portability of Templates," J. Cryptographic Engineering 2, no. 1 (2012).

Understanding the Leakage

```
Leakage variable y = SBox(p xor k)
```

Leakage model m(y) = HW[y] model(y) Estimate (nonlinear) leakage model for each y, using the profiling set Leakage l(y) Estimate the linear correlation This is the r-test*

Estimate the linear correlation between m(y) and l(y) on test set

*F. Durvaux and F.-X. Standaert, "From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces," in EUROCRYPT 2016.

(a) ρ -test with $p \oplus k$ (green) and $HW(Sbox(p \oplus k))$

(b) Screaming 10 cm: ρ -test with $p \oplus k$ (green) and $HW(Sbox(p \oplus k))$ (red)

Results for Screaming vs. Conventional

- Less POIs
- Slightly lower but still high correlation
- HW is not a good model

SNR is comparable But the leakage is distorted

Understanding the Leakage

Leakage variable y = SBox(p xor k)

Leakage model m(y) = HW[y] Linear combination of the bits of y Estimate a linear model of the bits Leakage I(y) of y using linear regression*

(a) Conventional

(b) Screaming at 10 cm

Results for Screaming vs. Conventional

- Confirm leakage from Sbox output
- Linear model is good for conventional traces
- Bad for screaming traces The leakage model is nonlinear

fit

profile

250

Understanding the Leakage

Leakage variable y

```
Leakage model m(y)
```

Leakage I(y)

Templates* can capture a second order relation between m(y) and l(y)

Results for Screaming vs. Conventional

• Templates attacks are not considerably better than profiled correlation attacks

First-order leakage (for our sample size)

- 1. Comparable SNR, distorted leakage model
- 2. Nonlinear leakage model
- 3. First order leakage

How To Compare Profiles

#Traces for key recovery given profile P and attack traces A*

*F.-X. Standaert et al., "An Overview of Power Analysis Attacks Against Field Programmable Gate Arrays," Proceedings of the IEEE 94, no. 2 (2006).

106

Distance, Setup, Channel Frequency, Instance, Time

Distance

- Quadratic power loss, but we can amplify
- Normalization cancels the multiplicative channel gain
- No extra distortion (different from conventional^{*})

Environment (noise) and setup

- Bigger role than distance, but we can improve the setup
- Some connections are better

Device instance

• No significant impact, per-trace normalization helps

Big Advantage

 Profile in good conditions, attack another instance in harsh conditions

*O. Meynard et al., "Far Correlation-Based EMA with a Precharacterized Leakage Model," in DATE 2010.

Understanding the SC distorted leakage model

Trace vs side channel signal

Do not confuse them

In general, there is not relation between their SNRs, what about distortion?

Conventional vs. screaming

Can we express a relation between a screaming trace and a conventional trace? Can we express a relation between the two leakage models? Simple channel est

Can we use a fixed portion of a trace to relate the two?

Potential useful application

Conventional profile, screaming attack?

Simple channel estimation between u and v does not seem to work

Backup (Noise-SDR)

Intuition: the full chain

Example: HamDRM RF-PWM

Implementation: discrete-time RF-PWM

```
Algorithm 1 Baseband to RF-PWM Modulation.
Input: Complex baseband signal x_{bb} sampled at T_{s_{bb}} = 1/F_{s_{bb}}, funda-
    mental frequency IF = f_0, time resolution T_{res} = 1/F_{res}, assuming
    x<sub>bb</sub> is normalized and F<sub>res</sub> is a multiple of F<sub>sub</sub>
Output: Lists of RF-PWM pulse timings Thigh, T at resolution Tres
 1: rep \leftarrow T_s/T_{res}
 2: T<sub>high</sub> ← []
 3: T ← []
 4: for k = 0 to len(x_{b b}) - 1 do
        a_{bb}[k], \theta_{bb}[k] \leftarrow toPolar(x_{bb}[k])
 53
 6:
        a_{bb}[k] \leftarrow \arcsin(a_{bb}[k])/\pi
 7: end for
 8: for i = 0 to len(x_{hh}) \cdot rep - 1 do
        x_{pwm}[i] \leftarrow \cos(2\pi f_0 i/F_{res} + \theta_{bb}[i/rep])
 Q:
10: end for
11: i ← 0
12: while x_{pwm}(i) < 0 do
       i ← i+1
13:
14: end while
15: while i < len(x_{pwm}) do
        t ← 0
16:
        while i + t < len(x_{pwm}) and x_{pwm}(i+t) \ge 0 do
17:
            t \leftarrow t+1
18:
        end while
19:
        while i + t < len(x_{pwm}) and x_{pwm}(i+t) < 0 do
203
            t \leftarrow t+1
21:
        end while
22:
        T \leftarrow [T, t]
23:
        T_{high} \leftarrow [T_{high}, a_{bb}[i/res] \cdot t]
24:
        i \leftarrow i + t
25
26: end while
```

$$\begin{split} f_0 &= \frac{F_{res}}{q}, q \geqslant 2\\ \theta_k &= 2k\pi f_0 \frac{q}{F_{res}}, q \in \left[-\left\lfloor \frac{F_{res}}{2kf_0} \right\rfloor, \left\lfloor \frac{F_{res}}{2kf_0} \right\rfloor \right)\\ \alpha_k &= sin(k\pi q \frac{f_0}{F_{res}}), q \in \left[0, \frac{1}{2k} \frac{F_{res}}{f_0} \right] \end{split}$$

Future Work

Model the spectrum in detail Effect of the edges Effect of interpolation Effect of jitter Etc.

Discrete-time RF-PWM

Implementation: mathematical modeling

Very large design space

Many variations of RF-PWM with impact on the spectrum properties^{*} We have chosen those most adapted to our very constrained scenario E.g., no interpolation of the baseband signal, natural sampling of the IF carrier, ...

Some specific properties of noise modulation and injection

Inaccurate time source, with jitter

Properties (e.g., frequency and phase) of the underlying leakage To which point we can approximate and simplify the desired signal?

Future work

Model the additional features of RF-PWM applied to noise modulation Improve signal quality by optimizing some design choices

*P. AJ Nuyts, P. Reynaert, and W. Dehaene, "Continuous-Time Digital Front-Ends for Multistandard Wireless Transmission" (Springer, 2014).

Injection

GPS jamming

Fig. 11. The sum-of-squares detector catches a degradation of the carrier-tonoise ratio at the *GPS* receiver when the camera is on.

Evaluation: Ham to GLONASS, choose best tradeoff!

Name	Modulation	Bandwidth
Voice AM	AM	10 kHz
Voice FM	NBFM	12.5 kHz
PSK31	2-PSK, USB	31 Hz
2xPSK500	2 2-PSK subcarriers, USB	1.2 kHz
RTTY45.45	2-FSK, USB	170 Hz
MFSK128	M-FSK, USB	1.928 kHz
Olivia 64/2000	M-FSK USB	2 kHz
SSTV	FM, USB	2.5 kHz
HamDRM	QAM, OFDM, USB	2.4 kHz
FT4	4-GFSK, USB	90 Hz
LoRa	CSS	8 kHz (customizable)
GLONASS C/A	DSSS	0.511 MHz

Evaluation: Arm-based smartphones

rr							
Model	Architecture	LPDDR	Frequency	Harmonics n	Bandwidth	Tested Protocols	
Innos D6000	ArmV8-A	3	400 MHz	1 - 4	few MHz	All but <i>HamDRM</i> , $n = 2$	
Nokia 3.1 (TA-1063)	ArmV8-A	3	13.56 MHz (NFC)	7	few kHz	PSK_{31} , n = 7	
Samsung Galaxy A30S (SM A397FN)	ArmV8-A	4	1794 MHz	1	few MHz	GLONASS C/A, $n = 1$	
Samsung S7 Exynos (SM-G930F)	ArmV8-A	4	1794 MHz	1	few kHz	Simple tunes and chirps	
Samsung Galaxy S5 Mini (SM G800F)	ArmV7-A	n.a.	200 MHz	1-11,13-19,26	tens of kHz	All but <i>GLONASS</i> , $n = 1$	
Samsung M31 (SM-M315F/DSN)	ArmV8-A	4	1794 MHz (rare)	1	few MHz	NBFM	
Samsung Galaxy J7 (SM-J730FM)	ArmV8-A	3	None identified	-	-	-	
Samsung Galaxy Young (GT-S631ON)	ArmV7-A	n.a.	None identified	-	-	-	
Sony Xperia C5 (E5533)	ArmV8-A	4	400 MHz	1-11	few MHz	NBFM, $LoRa$, $n = 6$	
Sony Xperia X (F5121)	ArmV8-A	3	None identified	-	-	-	
Motorola Moto E6S	ArmV7-A	3	400 MHz	1,2	few kHz	Simple tunes and chirps	
Google Nexus 5 (D821)	ArmV7-A	2	200 MHz	1 — 5,8,12 16,20,24	tens of kHz	NBFM, MFSK128, FT4, SSTV, Olivia, LoRa, n = 1	
Google Pixel XL	ArmV8-A	4	None identified	-	-	-	
Google Pixel 2	ArmV8-A	4	None identified	-	-	-	
Wiko Fever	ArmV8-A	3	None identified	-	-	-	
Huawei P8 Lite (PRA-LX1)	ArmV8-A	3	None identified	-	-	-	
Huawei P10 (VTR-L09)	ArmV8-A	4	None identified	-	-	-	
Huawei P8 SE (GRA-L09)	ArmV8-A	3	None identified	-	-		
OnePlus 7 Pro PE (GM1913)	ArmV8-A	4	None identified	-	-	-	

Concurrent work: LoRa-like Chirp Spread Spectrum

C, Shen et al., "When LoRa Meets EMR: Electromagnetic Covert Channels Can Be Super Resilient", IEEE S&P 2021

Acknowledgements

We would like to thank:

- The SeCiF project within the French-German Academy for the Industry of the future, the DAPCODS/IOTics ANR 2016 project (ANR-16-CE25-0015).
- The COST action CRYPTACUS.
- Google for the Faculty Award assigned to Aurélien Francillon.
- The R2Lab at Inria for their support with measurements in their anechoic chamber.

GRADUATE SCHOOL & RESEARCH CENTER IN DIGITAL SCIENCE

